Language Modeling

Many slides from Dan Jurafsky

Probabilistic Language Models

* Today’s goal: assign a probability to a sentence

* Machine Translation:
* P(high winds tonite) > P(large winds tonite)
* Spell Correction

Why? * The office is about fifteen minuets from my house
* P(about fifteen minutes from) > P(about fifteen minuets from)

* Speech Recognition
* P(I saw a van) >> P(eyes awe of an)

* + Summarization, question-answering, etc., etc.!!

Probabilistic Language Modeling

* Goal: compute the probability of a sentence or sequence
of words:

P(W) = P(w{,W,,W3,W,,Wc...W,)
* Related task: probability of an upcoming word:
P(ws | wq,wy,ws,wW,)
* A model that computes either of these:
P(W) or P(w,|w,w,..w,_,) is called a language model.
* Better: the grammar But language model or LM is standard

How to compute P(W)

* How to compute this joint probability:

* P(its, water, is, so, transparent, that)

* Intuition: let’s rely on the Chain Rule of Probability

Reminder: The Chain Rule

* Recall the definition of conditional probabilities
p(B|A) = P(A,B)/P(A) Rewriting: P(A,B) = P(A)P(B|A)

* More variables:
P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

* The Chain Rule in General
P(X1,X5,X3,...,Xn) = P(X{)P(X5 | X1)P(X5|X1,%5)...P(X,, | X1, X1 1)

The Chain Rule applied to compute joint
probability of words in sentence

Pww,...w)= HP(wi lww,...w._)

P(“its water is so transparent”) =
P(its) x P(water]|its) x P(is|its water)

x P(so|its water is) x P(transparent]|its water is
SO)

How to estimate these probabilities

* Could we just count and divide?

P(the |its water 1s so transparent that) =

Count(its water 1s so transparent that the)

Count(its water 1s so transparent that)
* No! Too many possible sentences!
* We'll never see enough data for estimating these

Markov Assumption

*Simplifying assumption:

Andrei Markov

P(the l1its water 1s so transparent that) = P(the | that)
*Or maybe

P(the lits water 1s so transparent that) = P(the | transparent that)

Markov Assumption

Pww,...w)= HP(Wi W eow)

*In other words, we approximate each
componentin the product

Pw Ilww,...w_)=Pw Iw__...w_)

Simplest case: Unigram model

Pww,...w)= HP(wi)

Some automatically generated sentences from a unigram model

fifth, an, of, futures, the, an, incorporated, a, a,
the, inflation, most, dollars, quarter, in, 1s, mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Bigram model

Condition on the previous word:
Pw lww,..w._)=Pw, lw,._)

texaco, rose, one, 1in, this, issue, 1s, pursuing, growth, 1in,
a, boiler, house, said, mr., gurria, mexico, 's, motion,
control, proposal, without, permission, from, five, hundred,
fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november

N-gram models

* We can extend to trigrams, 4-grams, 5-grams

*In general this is an insufficient model of language
* because language has long-distance dependencies:

“The computer which | had just put into the machine room on
the fifth floor crashed.”

* But we can often get away with N-gram models

Language
Modeling

Introduction to N-grams

Language
Modeling

Estimating N-gram
Probabilities

Estimating bigram probabilities
* The Maximum Likelihood Estimate

count(w,_,,w,
Plw, lw,_,)= Wi W)

count(w,_,)

c(w,_ ,w,)

c(w,_,)

Pw, Iw,._)=

An example

<s>|am Sam </s>

clw._..w.
Pw, lw,_,)= Wi 1, W) <s>Sam | am </s>
c(W;y) <s> | do not like green eggs and ham </s>
P(I|<s>)= ; = .67 P(Sam|<s>) = % =.33 Plam|I)=

|
W O
S

)
A
™~
n
V
§)]
4))

2
|

9| =
|
-
N

Ja
N
4))
=
Q
8

|
9| =

|

N

Jac
Q.
O
H

|

9= I

|

More examples:
Berkeley Restaurant Project sentences

* can you tell me about any good cantonese restaurants close by
* mid priced thai food is what i’'m looking for

* tell me about chez panisse

e can you give me a listing of the kinds of food that are available
* i’'m looking for a good place to eat breakfast

* when is caffe venezia open during the day

e Qut of 9222 sentences

Raw bigram counts

1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15| 0O 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Raw bigram probabilities

* Normalize by unigrams:

e Result:

1 want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278
1 want | to eat chinese | food | lunch | spend

1 0.002]0.331]0 0.0036| 0 0 0 0.00079
want 0.0022 | 0 0.66 | 0.0011| 0.0065 | 0.0065 | 0.0054] 0.0011
to 0.00083 | O 0.0017 | 0.28 0.00083 | O 0.0025 | 0.087
eat 0 0 0.00271 0 0.021 0.002710.056 |0
chinese || 0.0063 | O 0 0 0 0.52 10.0063|0
food 0.014 |0 0.014 |0 0.00092 | 0.00371 0 0
lunch || 0.0059 | O 0 0 0 0.0029 1 0 0
spend | 0.0036 | O 0.0036 | O 0 0 0 0

Bigram estimates of sentence probabilities

P(<s> | want english food </s>) =
P(1]<s>)
x P(want|l)
x P(english|want)
x P(food|english)
x P(</s>|food)
= .000031

What kinds of knowledge?

* P(english|want) =.0011
* P(chinese|want) = .0065
*P(to|want) = .66

*P(eat | to) =.28

*P(food | to) =0

* P(want | spend) =0

P (i | <s>) =.25

Practical Issues

*We do everything in log space
* Avoid underflow
*(also adding is faster than multiplying)

log(p; x p, x p3 x py) =logp, +log p, +1og p; +log p,

Language Modeling Toolkits

*SRILM
*http://www.speech.sri.com/projects/srilm/

KenLM
*https://kheafield.com/code/kenim/

Google N-Gram Release, August 2006

AUG All Our N-gram are Belong to You

Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

H

Here at Google Research we have been using word n-gram models for a variety of R&D projects,

That's why we decided to shére fhis enormous dataset —with everyone. We prbcess—ed 1,024,908,267,?29 —words
of running text and are publishing the counts for all 1,176,470,663 five-word sequences that appear at least 40
times. There are 13,588,391 unigue words, after discarding words that appear less than 200 times.

Google N-Gram Release

* serve as the incoming 92

* serve as the incubator 99

* serve as the i1ndependent 794

e serve as the index 223

* serve as the indication 72

* serve as the indicator 120

e serve as the indicators 45

* serve as the indispensable 111
* serve as the indispensible 40
* serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

Google Book N-grams

e http://ngrams.googlelabs.com/

Language
Modeling

Estimating N-gram
Probabilities

Language
Modeling

Evaluation and
Perplexity

Evaluation: How good is our model?

* Does our language model prefer good sentences to bad ones?
* Assign higher probability to “real” or “frequently observed” sentences

* Than “ungrammatical” or “rarely observed” sentences?

* We train parameters of our model on a training set.

* We test the model’s performance on data we haven’t seen.

* Atest setisan unseen dataset that is different from our training set, totally
unused.

 An evaluation metric tells us how well our model does on the test set.

Training on the test set

 We can’t allow test sentences into the training set

* We will assign it an artificially high probability when we set it in the
test set

* “Training on the test set”
e Bad science!
 And violates the honor code

Extrinsic evaluation of N-gram models

* Best evaluation for comparing models A and B
* Put each model in a task
* spelling corrector, speech recognizer, MT system
* Run the task, get an accuracy for A and for B
* How many misspelled words corrected properly
* How many words translated correctly
 Compare accuracy for A and B

Difficulty of extrinsic (in-vivo) evaluation of
N-gram models

* Extrinsic evaluation
* Time-consuming; can take days or weeks

*SO
* Sometimes use intrinsic evaluation: perplexity
* Bad approximation
* unless the test data looks just like the training data
* So generally only useful in pilot experiments
e But is helpful to think about.

Intuition of Perplexity

e The Shannon Game: (" mushrooms 0.1

* How well can we predict the next word? pepperoni 0.1
| always order pizza with cheese and < anchovies 0.01

The 33" President of the US was

| saw a fried rice 0.0001

e Unigrams are terrible at this game. (Why?)

e A better model of a text \. and 1e-100
* is one which assigns a higher probability to the word that actually occurs

Perplexity

The best language model is one that best predicts an unseen test set

e Gives the highest P(sentence) |

Perplexity is the inverse probability of PP(W) = POwwy..wy) ¥

the test set, normalized by the number
of words: _ 1{/ 1

Pwyw,..wy)

PP(W) =
(W) P(wilwy...wi_1)

Chain rule: A\l

i=1

E/

P Hlllt, 1
i=1

For bigrams: J

Minimizing perplexity is the same as maximizing probability

Perplexity as branching factor

* Let’s suppose a sentence consisting of random digits

* What is the perplexity of this sentence according to a model that
assign P=1/10 to each digit?

PP(W") — P("H‘ln‘g...m\!")_)l?

1N
— — - N
(_10)
1 —1
- 10

= 10

Lower perplexity = better model

* Training 38 million words, test 1.5 million words,
WSJ

N-gram Bigram Trigram
Order

Perplexity 962

Language
Modeling

Evaluation and
Perplexity

Language
Modeling

Generalization and zeros

The Shannon Visualization Method

* Choose a random bigram

. . o <S> I
<S>
(<s>, w) according to its probability I want
* Now chopse a r'andom b|g.,r.am (w, want to
X) according to its probability
_ to eat
* And so on untilwe choose </s> eat Chinese
* Then string the words together Chinese food

food </s>
I want to eat Chinese food

Approximating Shakespeare

gram

gram

gram

gram

—To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have
—Hill he late speaks; or! a more to leg less first you enter

—Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.
—What means, sir. I confess she? then all sorts, he is trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
"tis done.
—This shall forbid it should be branded, if renown made it empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;
—It cannot be but so.

Shakespeare as corpus

*N=884,647 tokens, V=29,066

*Shakespeare produced 300,000 bigram types out
of V2= 844 million possible bigrams.

* S0 99.96% of the possible bigrams were never seen
(have zero entries in the table)

*Quadrigrams worse: What's coming out looks
like Shakespeare because it is Shakespeare

The wall street journal is not shakespeare (no
offense)

1 Months the my and issue of year foreign new exchange’s september

were recession exchange new endorsed a acquire to six executives
gram

Last December through the way to preserve the Hudson corporation N.
2 B. E. C. Taylor would seem to complete the major central planners one
gram point five percent of U. S. E. has already old M. X. corporation of living
on information such as more frequently fishing to keep her

They also point to ninety nine point six billion dollars from two hundred
3 four oh six three percent of the rates of interest stores as Mexico and
gram Brazil on market conditions

Zeros

*Training set: * Test set
... denied the allegations ... denied the offer
... denied the reports _denied the loan

... denied the claims
... denied the request

P(“offer” | denied the) =0

/ero probability bigrams

* Bigrams with zero probability
* mean that we will assign 0 probability to the test set!

* And hence we cannot compute perplexity (can’t divide by 0)!

Language
Modeling

Generalization and zeros

Language
Modeling

Smoothing: Add-one
(Laplace) smoothing

The intuition of smoothing (from Dan Klein)

* When we have sparse statistics:

P(w | denied the)
3 allegations
2 reports
1 claims
1 request

7 total

 Steal probability mass to generalize better
P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other

7 total

o)
x 5
S c O
— o K
= S
™ & O

(V]
2 (I o
5|l o _z S
o || £ O O
= || 2 = © 35
- © &£ O

Add-one estimation

* Also called Laplace smoothing
* Pretend we saw each word one more time than we did
e Just add one to all the counts!

c(W,_,w;)
* MLE estimate: P, .(wlw._)= 1
c(w,_,)
 Add-1 estimate: cw,w)+1

P, (wlw_)=
Add-1 1 C(Wi_1)+v

Berkeley Restaurant Corpus: Laplace
smoothed bigram counts

1 want | to eat chinese | food | lunch | spend
i 6 | 828 [1 10 | 1 1 1 3
want 3 | 609 | 2 7 7 6 2
to 3 5 687 | 3 1 7 212
eat 1 3 | 17 3 43 |
chinese 2 1 1 83 2
food 16 16 2 5 |
lunch 3 1 1 2
spend 2 2 1 1

Laplace-smoothed bigrams

P (Wn ‘Wn—l)

C(Wn—lwn) + 1

C (Wn—1) +V

1 want to eat chinese | food lunch spend
1 0.0015 0.21 0.00025| 0.0025 0.00025| 0.00025| 0.00025| 0.00075
want 0.0013 0.00042| 0.26 0.00084 | 0.0029 0.0029 0.0025 0.00084
to 0.00078 | 0.00026(0.0013 0.18 0.00078 | 0.00026| 0.0018 0.055
eat 0.00046| 0.00046| 0.0014 0.00046 | 0.0078 0.0014 0.02 0.00046
chinese || 0.0012 0.00062 | 0.00062| 0.00062| 0.00062| 0.052 0.0012 0.00062
food 0.0063 0.00039 | 0.0063 0.00039| 0.00079| 0.002 0.00039| 0.00039
lunch 0.0017 0.00056 | 0.00056| 0.00056| 0.00056| 0.0011 0.00056 | 0.00056
spend 0.0012 0.00058 | 0.0012 0.00058 | 0.00058| 0.00058| 0.00058| 0.00058

Reconstituted counts

c’ (Wn—lwn.) —

[C(Wn—lwn) T 1] X C(Wn—l)

C(wy—1)+V

1 want to eat chinese | food| Iunch| spend
1 3.8 527 0.64 6.4 0.64 0.64| 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 44 133
eat 0.34| 0.34 1 0.34 5.8 1 15 0.34
chinese || 0.2 0.098(0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38| 0.19 0.19
spend 0.32| 0.16 0.32 0.16 0.16 0.16 0.16 0.16

Compare with raw bigram counts

1 want | to eat chinese | food | lunch | spend

1 5 827 0 9 0 0 0 2

want 2 0 608 1 6 6 5 1

to 2 0 4 686 | 2 0 6 211

eat 0 0 2 0 16 2 42 0

chinese 1 0 0 0 0 82 1 0

food 151 0 15 0 1 4 0 0

lunch 2 0 0 0 0 1 0 0

spend 1 0 1 0 0 0 0 0

1 want to eat chinese | food| Ilunch| spend

1 3.8 527 0.64 6.4 0.64 0.64 | 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 4.4 133
eat 0.34] 0.34 1 0.34 5.8 1 15 0.34
chinese || 0.2 0.098| 0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38 | 0.19 0.19
spend 0.32] 0.16 0.32 0.16 0.16 0.16 0.16 0.16

Add-1 estimation is a blunt instrument

* So add-1isn’t used for N-grams:
o We'll see better methods

e But add-1 is used to smooth other NLP models
e For text classification
* In domains where the number of zeros isn’t so huge.

Language
Modeling

Smoothing: Add-one
(Laplace) smoothing

Language
Modeling

Interpolation, Backoff,
and Web-Scale LMs

Backoff and Interpolation

* Sometimes it helps to use less context
e Condition on less context for contexts you haven’t learned much about

* Backoff:

* use trigram if you have good evidence,
* otherwise bigram, otherwise unigram

* Interpolation:
* mix unigram, bigram, trigram

* Interpolation works better

Linear Interpolation

* Simple interpolation

p(wn‘wn—2wn—l) =)LIP(Wn|Wn—2Wn—1)

FAaP(walwa1) > Ai=1
—|—7L3P(Wn) l

e Lambdas conditional on context:

P(H/’” ‘11/‘,,_21'1/‘,,_1) = A (“ ;; %)P(H/’” |“"”n—2””11—1)
Ao (n Z fl))P (W ’Wn—l)
+ A3 (w5)P (1)

How to set the lambdas?

Held-Out Test
Data Data
* Choose As to maximize the probability of held-out data:

* Fix the N-gram probabilities (on the training data)
* Then search for As that give largest probability to held-out set:

* Use a held-out corpus

logP(w,..w |M(A,..A))= Elog Pyoay W Iw))

Unknown words: Open versus closed
vocabulary tasks

* If we know all the words in advanced
* VocabularyV is fixed
* Closed vocabularytask

e Often we don’t know this
e Out Of Vocabulary = OOV words
* Open vocabularytask

* Instead: create an unknown word token <UNK>
* Trainingof <UNK> probabilities
* Createa fixed lexicon L of size V
* At text normalization phase, anytrainingword notin L changed to <UNK>
* Now we trainits probabilitieslike a normal word
* At decodingtime
e If textinput:Use UNK probabilities foranyword notin training

Huge web-scale n-grams

* How to deal with, e.g., Google N-gram corpus

* Pruning
* Only store N-grams with count > threshold.
 Removesingletons of higher-order n-grams
* Entropy-based pruning

e Efficiency
 Efficient data structures like tries
* Bloom filters: approximate language models

e Store words as indexes, not strings
* Use Huffman codingto fit large numbers of words into two bytes

* Quantize probabilities (4-8 bits instead of 8-byte float)

Smoothing for Web-scale N-grams

 “Stupid backoff” (Brants et al. 2007)
* No discounting, just use relative frequencies

-1
SW; 1w) =1

count(w:_,)

—= if count(w_,,,)>0
count(w,_,)

04S(w,lw;) otherwise

count(w;)

S(w,) =

N

Big language models help machine translation

a lot

044 .
+051BPIX2, 00"
s +0.15BP/x2
042 | o _
A& % +0.
5 +0.568P bgg{’,,i 0.39BP/x2
T e
5 04 + _x"(.‘".
p *40.70BP/x2
o .
= 0.38 | +0.62BP/x2 .
> . target KN ——
- +ldcnews KN ----»----
0.36 ot +webnews KN -
e target SB @
v +0.66BP/x2 +|dcnews SB ---=--
0.34 | +webnews SB --o -
, l " 4webSB -+
10 100 1000 10000 100000 1e+06

LM training data size in million tokens

Figure 5: BLEU scores for varying amounts of data
using Kneser-Ney (KN) and Stupid Backoff (SB).

N-gram Smoothing Summary

* Add-1 smoothing:

* OK for text categorization, not for language modeling

* The most commonly used method:
* Extended Interpolated Kneser-Ney

* For very large N-grams like the Web:
 Stupid backoff

Advanced Language Modeling

* Discriminative models:
e choose n-gram weights to improve a task, not to fit the training set

* Parsing-based models
* Caching Models

* Recently used words are more likely to appear

* These perform very poorly for speech recognition (why?)

c(w € history)

Peycpe (Wl history) = AP(w; lw,_,w,_)+(1-2) :
| history |

Language
Modeling

Interpolation, Backoff,
and Web-Scale LMs

Language
Modeling

Advanced:
Kneser-Ney Smoothing

Absolute discounting: just subtract a little

from each count

Suppose we wanted to subtract a little from a count
of 4 to save probability mass for the zeros

How much to subtract ?

Church and Gale (1991)’s clever idea

Divide up 22 million words of AP Newswire
* Trainingand held-outset
* for each bigramin thetrainingset
* seetheactual countin the held-outset!

* |t sure looks like c* = (c-.75)

Bigram count
Iin training

Bigram countin
heldout set

0

.0000270

0.448

1.25

2.24

3.23

4.21

5.23

6.21

7.21

IO NN PP WIN|F

8.26

Absolute Discounting Interpolation

e Save ourselves some time and just subtract 0.75 (or some d)!

discounted bigram Interpolation weight

c(w_,w,)—d /

P AbsoluteDiscounting (Wi l Wi—l) = T A‘ (Wi—l)P (W)
c(w,_,) N
unigram

(Maybe keeping a couple extra values of d for counts 1 and 2)
* But should we really just use the regular unigram P(w)?

Kneser-Ney Smoothing |

* Better estimate for probabilities of lower-order unigrams!
« Shannon game: [can’t see without my reading_Glassgsco ?
* “Francisco” is more common than “glasses”
* ... but “Francisco” always follows “San”

* The unigram is useful exactly when we haven’t seen this bigram!
* Instead of P(w): “How likely is w”

* Pontinuation(W): “How likely is w to appear as a novel continuation?
* For each word, countthe number of bigram types it completes
* Every bigram type was a novel continuation the first time it was seen

Feontmvuarion (W) * ‘{Wi—l re(w_,w)> O}‘

Kneser-Ney Smoothing |

* How many times does w appear as a novel continuation:
Peonrvuarion (W) = ‘{Wi—l re(w,w) > O}‘

* Normalized by the total number of word bigram types
‘{(wj_l,wj) e(w,,w;)> O}‘

‘{wl._1 c(w,_,w)> O}‘

P (W) =
CONTINUATION ‘{(Wj_lawj) ; C(Wj_l,Wj) > O}‘

Kneser-Ney Smoothing IV

max(c(w,_,,w,)—d,0)

PKN (Wi | Wi—l) =
c(w,_,)

+ AW, Peonrvuarion(W:)

A is a normalizing constant; the probability mass we’ve discounted

Alw,)= d) ‘{w c(w_,w)> O}‘

/ c(w,,
- . The number of word types that can follow w, ,
the normalized discount = # of word types we discounted
= # of times we applied normalized discount

71

Kneser-Ney Smoothing: Recursive
formulation

max(cgy(Wi_ ;) —d,0)

-1
CKN (Wl n+l

-1

+)L(Wi n+1)PKN(W lwz n+2

KN(W |Wz n+1) =

count(®) tor the highest order

Cxn (.) =

continuationcount(®) for lower order

Continuation count= Number of unique single word contexts for

Language
Modeling

Advanced:
Kneser-Ney Smoothing

