
Language	Modeling

Many	slides	from	Dan	Jurafsky

Probabilistic	Language	Models

•Today’s	goal:	assign	a	probability	 to	a	sentence
•Machine	Translation:
• P(high	winds	tonite)	>	P(largewinds	tonite)

• Spell	Correction
• The	office	is	about	fifteen	minuets from	my	house
• P(about	fifteen	minutes from)	>	P(about	fifteen	minuets from)

• Speech	Recognition
• P(I	saw	a	van)	>>	P(eyes	awe	of	an)

• +	Summarization,	question-answering,	etc.,	etc.!!

Why?

Probabilistic	Language	Modeling

•Goal:	compute	the	probability	of	a	sentence	or	sequence	
of	words:

P(W)	=	P(w1,w2,w3,w4,w5…wn)

•Related	task:	probability	 of	an	upcoming	word:
P(w5|w1,w2,w3,w4)

•A	model	that	computes	either	of	these:
P(W)					or					P(wn|w1,w2…wn-1)									 is	called	a	language	model.

• Better:	the	grammar							But	language	model	or	LM	is	standard

How	to	compute	P(W)

• How	to	compute	this	joint	probability:

•P(its,	water,	is,	so,	transparent,	 that)

• Intuition:	let’s	rely	on	the	Chain	Rule	of	Probability

Reminder:	The	Chain	Rule

•Recall	the	definition	of	conditional	probabilities
p(B|A)	=	P(A,B)/P(A) Rewriting:			P(A,B)	=	P(A)P(B|A)

•More	variables:
P(A,B,C,D)	=	P(A)P(B|A)P(C|A,B)P(D|A,B,C)

•The	Chain	Rule	in	General
P(x1,x2,x3,…,xn)	=	P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1,…,xn-1)

The	Chain	Rule	applied	to	compute	joint	
probability	of	words	in	sentence

P(“its	water	is	so	transparent”)	 =
P(its)	× P(water|its)	× P(is|its water)	

× P(so|its water	is)	× P(transparent|its water	is	
so)

€

P(w1w2…wn) = P(wi |w1w2…wi−1)
i
∏

How	to	estimate	these	probabilities

• Could	we	just	count	and	divide?

• No!		Too	many	possible	sentences!
•We’ll	never	see	enough	data	for	estimating	these

€

P(the | its water is so transparent that) =

Count(its water is so transparent that the)
Count(its water is so transparent that)

Markov	Assumption

•Simplifying	assumption:

•Or	maybe

€

P(the | its water is so transparent that) ≈ P(the | that)

€

P(the | its water is so transparent that) ≈ P(the | transparent that)

Andrei	Markov

Markov	Assumption

•In	other	words,	we	approximate	each	
component	in	the	product

€

P(w1w2…wn) ≈ P(wi |wi−k…wi−1)
i
∏

€

P(wi |w1w2…wi−1) ≈ P(wi |wi−k…wi−1)

Simplest	case:	Unigram	model

fifth, an, of, futures, the, an, incorporated, a, a,
the, inflation, most, dollars, quarter, in, is, mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Some	automatically	generated	sentences	from	a	unigram	model

€

P(w1w2…wn) ≈ P(wi)
i
∏

Condition	on	the	previous	word:

Bigram	model

texaco, rose, one, in, this, issue, is, pursuing, growth, in,
a, boiler, house, said, mr., gurria, mexico, 's, motion,
control, proposal, without, permission, from, five, hundred,
fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november

€

P(wi |w1w2…wi−1) ≈ P(wi |wi−1)

N-gram	models

•We	can	extend	to	trigrams,	4-grams,	5-grams
• In	general	this	is	an	insufficient	model	of	language
• because	language	has	long-distance	dependencies:

“The	computer	which	I	had	just	put	into	the	machine	room	on	
the	fifth	floor	crashed.”

•But	we	can	often	get	away	with	N-gram	models

Introduction	to	N-grams

Language	
Modeling

Estimating	N-gram	
Probabilities

Language	
Modeling

Estimating	bigram	probabilities

• The	Maximum	Likelihood	Estimate

€

P(wi |wi−1) =
count(wi−1,wi)
count(wi−1)

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

An	example

<s>	I	am	Sam	</s>
<s>	Sam	I	am	</s>
<s>	I	do	not	like	green	eggs	and	ham	</s>

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

More	examples:	
Berkeley	Restaurant	Project	sentences

• can	you	tell	me	about	any	good	cantonese restaurants	close	by
•mid	priced	thai food	is	what	i’m looking	for
• tell	me	about	chez	panisse
• can	you	give	me	a	listing	of	the	kinds	of	food	that	are	available
• i’m looking	for	a	good	place	to	eat	breakfast
•when	is	caffe venezia open	during	the	day

Raw	bigram	counts

• Out	of	9222	sentences

Raw	bigram	probabilities

• Normalize	by	unigrams:

• Result:

Bigram	estimates	of	sentence	probabilities

P(<s>	I	want	english food	</s>)	=
P(I|<s>)	 		
× P(want|I)		
× P(english|want)	 		
× P(food|english)	 		
× P(</s>|food)

=		.000031

What	kinds	of	knowledge?

•P(english|want)	 	=	.0011
•P(chinese|want)	 =		.0065
•P(to|want)	=	.66
•P(eat	|	to)	=	.28
•P(food	|	to)	=	0
•P(want	|	spend)	=	0
•P	(i |	<s>)	=	.25

Practical	Issues

•We	do	everything	in	log	space
•Avoid	underflow
•(also	adding	is	faster	than	multiplying)

log(p1 × p2 × p3 × p4) = log p1 + log p2 + log p3 + log p4

Language	Modeling	Toolkits

•SRILM
•http://www.speech.sri.com/projects/srilm/
•KenLM
•https://kheafield.com/code/kenlm/

Google	N-Gram	Release,	August	2006

…

Google	N-Gram	Release

• serve as the incoming 92
• serve as the incubator 99
• serve as the independent 794
• serve as the index 223
• serve as the indication 72
• serve as the indicator 120
• serve as the indicators 45
• serve as the indispensable 111
• serve as the indispensible 40
• serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

Google	Book	N-grams

• http://ngrams.googlelabs.com/

Estimating	N-gram	
Probabilities

Language	
Modeling

Evaluation	and	
Perplexity

Language	
Modeling

Evaluation:	How	good	is	our	model?

• Does	our	language	model	prefer	good	sentences	to	bad	ones?
• Assign	higher	probability	to	“real”	or	“frequently	observed”	sentences	

• Than	“ungrammatical”	or	“rarely	observed”	sentences?

• We	train	parameters	of	our	model	on	a	training	set.
• We	test	the	model’s	performance	on	data	we	haven’t	seen.
• A	test	set	is	an	unseen	dataset	that	is	different	from	our	training	set,	totally	
unused.
• An	evaluation	metric	tells	us	how	well	our	model	does	on	the	test	set.

Training	on	the	test	set

• We	can’t	allow	test	sentences	into	the	training	set
• We	will	assign	it	an	artificially	high	probability	when	we	set	it	in	the	
test	set
• “Training	on	the	test	set”
• Bad	science!
• And	violates	the	honor	code

30

Extrinsic	evaluation	of	N-gram	models

•Best	evaluation	for	comparing	models	A	and	B
• Put	each	model	in	a	task
• spelling	corrector,	speech	recognizer,	MT	system

• Run	the	task,	get	an	accuracy	for	A	and	for	B
• How	many	misspelled	words	corrected	properly
• How	many	words	translated	correctly

• Compare	accuracy	for	A	and	B

Difficulty	of	extrinsic	(in-vivo)	evaluation	of		
N-gram	models
•Extrinsic	evaluation
• Time-consuming;	can	take	days	or	weeks

•So
• Sometimes	use	intrinsic evaluation:	perplexity
• Bad	approximation	
• unless	the	test	data	looks	just like	the	training	data
• So	generally	only	useful	in	pilot	experiments

• But	is	helpful	to	think	about.

Intuition	of	Perplexity

• The	Shannon	Game:
• How	well	can	we	predict	the	next	word?

• Unigrams	are	terrible	at	this	game.		(Why?)

• A	better	model	of	a	text
• is	one	which	assigns	a	higher	probability	to	the	word	that	actually	occurs

I	always	order	pizza	with	cheese	and	____

The	33rd President	of	the	US	was	____

I	saw	a	____

mushrooms 0.1

pepperoni 0.1

anchovies 0.01

….

fried rice 0.0001

….

and 1e-100

Perplexity

Perplexity	is	the	inverse	probability	of	
the	test	set,	normalized	by	the	number	
of	words:

Chain	rule:

For	bigrams:

Minimizing	perplexity	is	the	same	as	maximizing	probability

The	best	language	model	is	one	that	best	predicts	an	unseen	test	set
• Gives	the	highest	P(sentence)

PP(W) = P(w1w2...wN)
−

1
N

 =
1

P(w1w2...wN)
N

Perplexity	as	branching	factor

• Let’s	suppose	a	sentence	consisting	of	random	digits
• What	is	the	perplexity	of	this	sentence	according	to	a	model	that	
assign	P=1/10	to	each	digit?

Lower	perplexity	=	better	model

•Training	38	million	words,	test	1.5	million	words,	
WSJ

N-gram	
Order

Unigram Bigram Trigram

Perplexity 962 170 109

Evaluation	and	
Perplexity

Language	
Modeling

Generalization	and	zeros

Language	
Modeling

The	Shannon	Visualization	Method

• Choose	a	random	bigram	
(<s>,	w)	according	to	its	probability

• Now	choose	a	random	bigram								(w,	
x)	according	to	its	probability
• And	so	on	until	we	choose	</s>
• Then	string	the	words	together

<s> I
I want
want to

to eat
eat Chinese

Chinese food
food </s>

I want to eat Chinese food

Approximating	Shakespeare

10 CHAPTER 4 • N-GRAMS

Imagine all the words of English covering the probability space between 0 and 1,
each word covering an interval proportional to its frequency. We choose a random
value between 0 and 1 and print the word whose interval includes this chosen value.
We continue choosing random numbers and generating words until we randomly
generate the sentence-final token </s>. We can use the same technique to generate
bigrams by first generating a random bigram that starts with <s> (according to its
bigram probability), then choosing a random bigram to follow (again, according to
its bigram probability), and so on.

To give an intuition for the increasing power of higher-order N-grams, Fig. 4.3
shows random sentences generated from unigram, bigram, trigram, and 4-gram
models trained on Shakespeare’s works.

1
–To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have

gram –Hill he late speaks; or! a more to leg less first you enter

2
–Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.

gram –What means, sir. I confess she? then all sorts, he is trim, captain.

3
–Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
’tis done.

gram –This shall forbid it should be branded, if renown made it empty.

4
–King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;

gram –It cannot be but so.
Figure 4.3 Eight sentences randomly generated from four N-grams computed from Shakespeare’s works. All
characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected
for capitalization to improve readability.

The longer the context on which we train the model, the more coherent the sen-
tences. In the unigram sentences, there is no coherent relation between words or any
sentence-final punctuation. The bigram sentences have some local word-to-word
coherence (especially if we consider that punctuation counts as a word). The tri-
gram and 4-gram sentences are beginning to look a lot like Shakespeare. Indeed, a
careful investigation of the 4-gram sentences shows that they look a little too much
like Shakespeare. The words It cannot be but so are directly from King John. This
is because, not to put the knock on Shakespeare, his oeuvre is not very large as
corpora go (N = 884,647,V = 29,066), and our N-gram probability matrices are
ridiculously sparse. There are V 2 = 844,000,000 possible bigrams alone, and the
number of possible 4-grams is V 4 = 7⇥1017. Thus, once the generator has chosen
the first 4-gram (It cannot be but), there are only five possible continuations (that, I,
he, thou, and so); indeed, for many 4-grams, there is only one continuation.

To get an idea of the dependence of a grammar on its training set, let’s look at an
N-gram grammar trained on a completely different corpus: the Wall Street Journal
(WSJ) newspaper. Shakespeare and the Wall Street Journal are both English, so
we might expect some overlap between our N-grams for the two genres. Fig. 4.4
shows sentences generated by unigram, bigram, and trigram grammars trained on
40 million words from WSJ.

Compare these examples to the pseudo-Shakespeare in Fig. 4.3. While superfi-
cially they both seem to model “English-like sentences”, there is obviously no over-

Shakespeare	as	corpus

•N=884,647	tokens,	V=29,066
•Shakespeare	produced	300,000	bigram	types	out	
of	V2=	844	million	possible	bigrams.
•So	99.96%	of	the	possible	bigrams	were	never	seen	
(have	zero	entries	 in	the	table)

•Quadrigramsworse:			What's	coming	out	looks	
like	Shakespeare	because	it	is Shakespeare

The	wall	street	journal	is	not	shakespeare	(no	
offense) 4.3 • GENERALIZATION AND ZEROS 11

1 Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

gram

2
Last December through the way to preserve the Hudson corporation N.
B. E. C. Taylor would seem to complete the major central planners one

gram point five percent of U. S. E. has already old M. X. corporation of living
on information such as more frequently fishing to keep her

3
They also point to ninety nine point six billion dollars from two hundred
four oh six three percent of the rates of interest stores as Mexico and

gram Brazil on market conditions
Figure 4.4 Three sentences randomly generated from three N-gram models computed from
40 million words of the Wall Street Journal, lower-casing all characters and treating punctua-
tion as words. Output was then hand-corrected for capitalization to improve readability.

lap whatsoever in possible sentences, and little if any overlap even in small phrases.
This stark difference tells us that statistical models are likely to be pretty useless as
predictors if the training sets and the test sets are as different as Shakespeare and
WSJ.

How should we deal with this problem when we build N-gram models? One way
is to be sure to use a training corpus that has a similar genre to whatever task we are
trying to accomplish. To build a language model for translating legal documents,
we need a training corpus of legal documents. To build a language model for a
question-answering system, we need a training corpus of questions.

Matching genres is still not sufficient. Our models may still be subject to the
problem of sparsity. For any N-gram that occurred a sufficient number of times,
we might have a good estimate of its probability. But because any corpus is limited,
some perfectly acceptable English word sequences are bound to be missing from it.
That is, we’ll have a many cases of putative “zero probability N-grams” that should
really have some non-zero probability. Consider the words that follow the bigram
denied the in the WSJ Treebank3 corpus, together with their counts:

denied the allegations: 5
denied the speculation: 2
denied the rumors: 1
denied the report: 1

But suppose our test set has phrases like:

denied the offer
denied the loan

Our model will incorrectly estimate that the P(offer|denied the) is 0!
These zeros— things things that don’t ever occur in the training set but do occurzeros

in the test set—are a problem for two reasons. First, they means we are underes-
timating the probability of all sorts of words that might occur, which will hurt the
performance of any application we want to run on this data.

Second, if the probability of any word in the testset is 0, the entire probability of
the test set is 0. But the definition of perplexity is based on the inverse probability
of the test set. If some words have zero probability, we can’t compute perplexity at
all, since we can’t divide by 0!

Zeros

•Training	set:
…	denied	the	allegations
…	denied	the	reports
…	denied	the	claims
…	denied	the	request

P(“offer”	|	denied	the)	=	0

• Test	set
…	denied	the	offer
…	denied	the	loan

Zero	probability	bigrams

• Bigrams	with	zero	probability
• mean	that	we	will	assign	0	probability	to	the	test	set!

• And	hence	we	cannot	compute	perplexity	(can’t	divide	by	0)!

Generalization	and	zeros

Language	
Modeling

Smoothing:	Add-one	
(Laplace)	smoothing

Language	
Modeling

The intuition of smoothing (from Dan Klein)

• When	we	have	sparse	statistics:

• Steal	probability	mass	to	generalize	better

P(w	|	denied	 the)
3	allegations
2	reports
1	claims
1	request
7	total

P(w	|	denied	 the)
2.5	allegations
1.5	reports
0.5	claims
0.5	request
2	other
7	total

al
le
ga
tio

ns

re
po

rt
s

cla
im
s

at
ta
ck

re
qu
es
t

m
an

ou
tc
om
e

…

al
le
ga
tio

ns

at
ta
ck

m
an

ou
tc
om
e

…al
le
ga
tio

ns

re
po

rt
s

cl
ai
m
s

re
qu

es
t

Add-one	estimation

•Also	called	Laplace	smoothing
• Pretend	we	saw	each	word	one	more	time	than	we	did
• Just	add	one	to	all	the	counts!

•MLE	estimate:

•Add-1	estimate:

PMLE (wi |wi−1) =
c(wi−1,wi)
c(wi−1)

PAdd−1(wi |wi−1) =
c(wi−1,wi)+1
c(wi−1)+V

Berkeley Restaurant Corpus: Laplace
smoothed bigram counts

Laplace-smoothed bigrams

Reconstituted counts

Compare with raw bigram counts

Add-1	estimation	is	a	blunt	instrument

• So	add-1	isn’t	used	for	N-grams:	
• We’ll	see	better	methods

• But	add-1	is	used	to	smooth	other	NLP	models
• For	text	classification	
• In	domains	where	the	number	of	zeros	isn’t	so	huge.

Smoothing:	Add-one	
(Laplace)	smoothing

Language	
Modeling

Interpolation,	Backoff,	
and	Web-Scale	LMs

Language	
Modeling

Backoff and Interpolation
• Sometimes	it	helps	to	use	less context
• Condition	on	less	context	for	contexts	you	haven’t	learned	much	about	

• Backoff:	
• use	trigram	if	you	have	good	evidence,
• otherwise	bigram,	otherwise	unigram

• Interpolation:	
• mix	unigram,	bigram,	trigram

• Interpolation	works	better

Linear	Interpolation

•Simple	interpolation

• Lambdas	conditional	on	context:

4.4 • SMOOTHING 15

The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.

4.4.2 Add-k smoothing
One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P⇤
Add-k(wn|wn�1) =

C(wn�1wn)+ k
C(wn�1)+ kV

(4.23)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

4.4.3 Backoff and Interpolation
The discounting we have been discussing so far can help solve the problem of zero
frequency N-grams. But there is an additional source of knowledge we can draw
on. If we are trying to compute P(wn|wn�2wn�1) but we have no examples of a
particular trigram wn�2wn�1wn, we can instead estimate its probability by using
the bigram probability P(wn|wn�1). Similarly, if we don’t have counts to compute
P(wn|wn�1), we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this N-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order N-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the probability estimatesinterpolation

from all the N-gram estimators, weighing and combining the trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different order N-grams by linearly
interpolating all the models. Thus, we estimate the trigram probability P(wn|wn�2wn�1)
by mixing together the unigram, bigram, and trigram probabilities, each weighted
by a l :

P̂(wn|wn�2wn�1) = l1P(wn|wn�2wn�1)

+l2P(wn|wn�1)

+l3P(wn) (4.24)

such that the l s sum to 1: X

i

li = 1 (4.25)

In a slightly more sophisticated version of linear interpolation, each l weight is
computed in a more sophisticated way, by conditioning on the context. This way,
if we have particularly accurate counts for a particular bigram, we assume that the
counts of the trigrams based on this bigram will be more trustworthy, so we can
make the l s for those trigrams higher and thus give that trigram more weight in

4.4 • SMOOTHING 15

The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.

4.4.2 Add-k smoothing
One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P⇤
Add-k(wn|wn�1) =

C(wn�1wn)+ k
C(wn�1)+ kV

(4.23)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

4.4.3 Backoff and Interpolation
The discounting we have been discussing so far can help solve the problem of zero
frequency N-grams. But there is an additional source of knowledge we can draw
on. If we are trying to compute P(wn|wn�2wn�1) but we have no examples of a
particular trigram wn�2wn�1wn, we can instead estimate its probability by using
the bigram probability P(wn|wn�1). Similarly, if we don’t have counts to compute
P(wn|wn�1), we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this N-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order N-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the probability estimatesinterpolation

from all the N-gram estimators, weighing and combining the trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different order N-grams by linearly
interpolating all the models. Thus, we estimate the trigram probability P(wn|wn�2wn�1)
by mixing together the unigram, bigram, and trigram probabilities, each weighted
by a l :

P̂(wn|wn�2wn�1) = l1P(wn|wn�2wn�1)

+l2P(wn|wn�1)

+l3P(wn) (4.24)

such that the l s sum to 1: X

i

li = 1 (4.25)

In a slightly more sophisticated version of linear interpolation, each l weight is
computed in a more sophisticated way, by conditioning on the context. This way,
if we have particularly accurate counts for a particular bigram, we assume that the
counts of the trigrams based on this bigram will be more trustworthy, so we can
make the l s for those trigrams higher and thus give that trigram more weight in

How	to	set	the	lambdas?

• Use	a	held-out corpus

• Choose	λs to	maximize	the	probability	of	held-out	data:
• Fix	the	N-gram	probabilities	(on	the	training	data)
• Then	search	for	λs that	give	largest	probability	to	held-out	set:

Training	Data Held-Out	
Data

Test	
Data

logP(w1...wn |M (λ1...λk)) = logPM (λ1...λk) (wi |wi−1)
i
∑

Unknown	words:	Open	versus	closed	
vocabulary	tasks

• If	we	know	all	the	words	in	advanced
• Vocabulary	V	is	fixed
• Closed	vocabulary	task

• Often	we	don’t	know	this
• Out	Of	Vocabulary =	OOV	words
• Open	vocabulary	task

• Instead:	create	an	unknown	word	token	<UNK>
• Training	of	<UNK>	probabilities

• Create	a	fixed	lexicon	L	of	size	V
• At	text	normalization	phase,	any	training	word	not	in	L	changed	to		<UNK>
• Now	we	train	its	probabilities	like	a	normal	word

• At	decoding	time
• If	text	input:	Use	UNK	probabilities	for	any	word	not	in	training

Huge	web-scale	n-grams
• How	to	deal	with,	e.g.,	Google	N-gram	corpus
• Pruning
• Only	store	N-grams	with	count	>	threshold.

• Remove	singletons	of	higher-order	n-grams
• Entropy-based	pruning

• Efficiency
• Efficient	data	structures	like	tries
• Bloom	filters:	approximate	language	models
• Store	words	as	indexes,	not	strings

• Use	Huffman	coding	to	fit	large	numbers	of	words	into	two	bytes
• Quantize	probabilities	(4-8	bits	instead	of	8-byte	float)

Smoothing	for	Web-scale	N-grams

• “Stupid	backoff”	(Brants et	al.	2007)
•No	discounting,	 just	use	relative	frequencies	

61

S(wi |wi−k+1
i−1) =

count(wi−k+1
i)

count(wi−k+1
i−1)

 if count(wi−k+1
i)> 0

0.4S(wi |wi−k+2
i−1) otherwise

"

#
$$

%
$
$

S(wi) =
count(wi)

N

Big	language	models	help	machine	translation	
a	lot

N-gram	Smoothing	Summary

•Add-1	smoothing:
• OK	for	text	categorization,	not	for	language	modeling

•The	most	commonly	used	method:
• Extended	Interpolated	Kneser-Ney

•For	very	large	N-grams	like	the	Web:
• Stupid	backoff

63

Advanced Language Modeling
• Discriminative	models:
• choose	n-gram	weights	to	improve	a	task,	not	to	fit	the		training	set

• Parsing-based	models
• Caching	Models
• Recently	used	words	are	more	likely	to	appear

• These	perform	very	poorly	for	speech	recognition	(why?)

PCACHE (w | history) = λP(wi |wi−2wi−1)+ (1−λ)
c(w ∈ history)
| history |

Interpolation,	Backoff,	
and	Web-Scale	LMs

Language	
Modeling

Language
Modeling

Advanced:
Kneser-Ney Smoothing

Absolute discounting: just subtract a little
from each count

• Suppose	we	wanted	to	subtract	a	little	from	a	count	
of	4	to	save	probability	mass	for	the	zeros
• How	much	to	subtract	?

• Church	and	Gale	(1991)’s	clever	idea
• Divide	up	22	million	words	of	AP	Newswire

• Training	and	held-out	set
• for	each	bigram	in	the	training	set
• see	the	actual	count	in	the	held-out	set!

• It	sure	looks	like	c*	=	(c	- .75)

Bigram	count	
in	training

Bigram	count	in	
heldout set

0 .0000270
1 0.448
2 1.25
3 2.24
4 3.23
5 4.21
6 5.23
7 6.21
8 7.21
9 8.26

Absolute Discounting Interpolation

• Save	ourselves	some	time	and	just	subtract	0.75	(or	some	d)!

(Maybe	keeping	a	couple	extra	values	of	d	for	counts	1	and	2)
•But	should	we	really	just	use	the	regular	unigram	P(w)?

68

PAbsoluteDiscounting (wi |wi−1) =
c(wi−1,wi)− d

c(wi−1)
+λ(wi−1)P(w)

discounted	bigram

unigram

Interpolation	weight

• Better	estimate	for	probabilities	of	lower-order	unigrams!
• Shannon	game:		I	can’t	see	without	my	reading___________?
• “Francisco”	is	more	common	than	“glasses”
• …	but	“Francisco”	always	follows	“San”

• The	unigram	is	useful	exactly	when	we	haven’t	seen	this	bigram!
• Instead	of		P(w):	“How	likely	is	w”
• Pcontinuation(w):		“How	likely	is	w	to	appear	as	a	novel	continuation?
• For	each	word,	count	the	number	of	bigram	types	it	completes
• Every	bigram	type	was	a	novel	continuation	the	first	time	it	was	seen

Francisco

Kneser-Ney Smoothing I

glasses

PCONTINUATION (w)∝ {wi−1 : c(wi−1,w)> 0}

Kneser-Ney Smoothing II

• How	many	times	does	w	appear	as	a	novel	continuation:

• Normalized	by	the	total	number	of	word	bigram	types

PCONTINUATION (w) =
{wi−1 : c(wi−1,w)> 0}

{(wj−1,wj) : c(wj−1,wj)> 0}

PCONTINUATION (w)∝ {wi−1 : c(wi−1,w)> 0}

{(wj−1,wj) : c(wj−1,wj)> 0}

Kneser-Ney Smoothing IV

71

PKN (wi |wi−1) =
max(c(wi−1,wi)− d, 0)

c(wi−1)
+λ(wi−1)PCONTINUATION (wi)

λ(wi−1) =
d

c(wi−1)
{w : c(wi−1,w)> 0}

λ is	a	normalizing	constant;	the	probability	mass	we’ve	discounted

the	normalized	discount
The	number	of	word	types	that	can	follow	wi-1
=	#	of	word	types	we	discounted
=	#	of	times	we	applied	normalized	discount

Kneser-Ney Smoothing: Recursive
formulation

72

PKN (wi |wi−n+1
i−1) = max(cKN (wi−n+1

i)− d, 0)
cKN (wi−n+1

i−1)
+λ(wi−n+1

i−1)PKN (wi |wi−n+2
i−1)

cKN (•) =
count(•) for the highest order

continuationcount(•) for lower order

!
"
#

$#

Continuation	count	=	Number	of	unique	single	word	contexts	for	�

Language
Modeling

Advanced:
Kneser-Ney Smoothing

